5,837 research outputs found

    Renormalization-group and numerical analysis of a noisy Kuramoto-Sivashinsky equation in 1+1 dimensions

    Full text link
    The long-wavelength properties of a noisy Kuramoto-Sivashinsky (KS) equation in 1+1 dimensions are investigated by use of the dynamic renormalization group (RG) and direct numerical simulations. It is shown that the noisy KS equation is in the same universality class as the Kardar-Parisi-Zhang (KPZ) equation in the sense that they have scale invariant solutions with the same scaling exponents in the long-wavelength limit. The RG analysis reveals that the RG flow for the parameters of the noisy KS equation rapidly approach the KPZ fixed point with increasing the strength of the noise. This is supplemented by the numerical simulations of the KS equation with a stochastic noise, in which the scaling behavior of the KPZ equation can be easily observed even in the moderate system size and time.Comment: 12pages, 7figure

    Pressure Tuning of an Ionic Insulator into a Heavy Electron Metal: An Infrared Study of YbS

    Get PDF
    Optical conductivity [σ(ω)\sigma(\omega)] of YbS has been measured under pressure up to 20 GPa. Below 8 GPa, σ(ω)\sigma(\omega) is low since YbS is an insulator with an energy gap between fully occupied 4ff state and unoccupied conduction (cc) band. Above 8 GPa, however, σ(ω)\sigma(\omega) increases dramatically, developing a Drude component due to heavy carriers and characteristic infrared peaks. It is shown that increasing pressure has caused an energy overlap and hybridization between the cc band and 4ff state, thus driving the initially ionic and insulating YbS into a correlated metal with heavy carriers

    Interspecific differences in the larval performance of Pieris butterflies (Lepidoptera: Pieridae) are associated with differences in the glucosinolate profiles of host plants

    No full text
    The tremendous diversity of plants and herbivores has arisen from a coevolutionary relationship characterized by plant defense and herbivore counter adaptation. Pierid butterfly species feed on Brassicales plants that produce glucosinolates as a chemical deterrent against herbivory. In turn, the larvae of pierids have nitrile specifier proteins (NSPs) that are expressed in their gut and disarm glucosinolates. Pierid butterflies are known to have diversified in response to glucosinolate diversification in Brassicales. Therefore, each pierid species is expected to have a spectrum of host plants characterized by specific glucosinolate profiles. In this study, we tested whether the larval performance of different Pieris species, a genus in Pieridae (Lepidoptera: Pieridae), was associated with plant defense traits of putative host plants. We conducted feeding assays using larvae of three Pieris species and 10 species of the Brassicaceae family possessing different leaf physical traits and glucosinolate profile measurements. The larvae of Pieris rapae responded differently in the feeding assays compared with the other two Pieris species. This difference was associated with differences in glucosinolate profiles but not with variations in physical traits of the host plants. This result suggests that individual Pieris species are adapted to a subset of glucosinolate profiles within the Brassicaceae. Our results support the idea that the host ranges of Pieris species depend on larval responses to glucosinolate diversification in the host species, supporting the hypothesis of coevolution between butterflies and host plants mediated by the chemical arms race

    Vortex lattice for a holographic superconductor

    Full text link
    We investigate the vortex lattice solution in a (2+1)-dimensional holographic model of superconductors constructed from a charged scalar condensate. The solution is obtained perturbatively near the second-order phase transition and is a holographic realization of the Abrikosov lattice. Below a critical value of magnetic field, the solution has a lower free energy than the normal state. Both the free energy density and the superconducting current are expressed by nonlocal functions, but they reduce to the expressions in the Ginzburg-Landau (GL) theory at long wavelength. As a result, a triangular lattice becomes the most favorable solution thermodynamically as in the GL theory of type II superconductors.Comment: v2: minor changes, references added; 11 pages, 2 figures: version to appear in PR

    Mirror effect induced by the dilaton field on the Hawking radiation

    Full text link
    We discuss the string creation in the near-extremal NS1 black string solution. The string creation is described by an effective field equation derived from a fundamental string action coupled to the dilaton field in a conformally invariant manner. In the non-critical string model the dilaton field causes a timelike mirror surface outside the horizon when the size of the black string is comparable to the Planck scale. Since the fundamental strings are reflected by the mirror surface, the negative energy flux does not propagate across the surface. This means that the evaporation stops just before the naked singularity of the extremal black string appears even though the surface gravity is non-zero in the extremal limit.Comment: 15 page

    The planetary nebula population in the halo of M87

    Full text link
    We investigate the diffuse light in the outer regions of the nearby elliptical galaxy M87 in the Virgo cluster, using planetary nebulas (PNs) as tracers. The surveyed areas (0.43 squared degrees) cover M87 up to a radial distance of 150 kpc, in the ransition region between galaxy halo and intracluster light (ICL). All PNs are identified through the on-off band technique using automatic selection criteria based on the distribution of the detected sources in the colour-magnitude diagram and the properties of their point-spread function. We extract a catalogue of 688 objects down to m_5007=28.4, with an estimated residual contamination from foreground stars and background Lyalpha galaxies, which amounts to ~35% of the sample. This is one of the largest extragalactic PN samples in number of candidates, magnitude depth, and radial extent, which allows us to carry out an unprecedented photometric study of the PN population in the outer regions of M87. We find that the logarithmic density profile of the PN distribution is shallower than the surface brightness profile at large radii. This behaviour is consistent with the superposition of two components associated with the halo of M87 and with the ICL, which have different luminosity specific PN numbers, the ICL contributing three times more PNs per unit light. Because of the depth of this survey we are also able to study the shape of the PN luminosity function (PNLF) in the outer regions of M87. We find a slope for the PNLF that is steeper at fainter magnitudes than the standard analytical PNLF formula and adopt a generalised model that treats the slope as a free parameter. Comparing the PNLF of M87 and the M31 bulge, both normalised by the sampled luminosity, the M87 PNLF contains fewer bright PNs and has a steeper slope towards fainter magnitudes.Comment: 16 pages, 13 figures, 5 tables, accepted for publication in A&

    A classroom deployment of a haptic system for learning cell biology

    Get PDF
    The use of haptic systems in the classroom for enhancing science education is an underexplored area. In the education literature, it has been reported that certain concepts in science education are difficult for students to grasp and, as a result, misconceptions can be formed in the students' knowledge. We conducted a study with 62 Year 8 (typically 12-13 years old) students who used a haptic application to study cell biology, specifically the concept of diffusion across a cell membrane. The preliminary analysis of the feedback from the students suggests opportunities for haptic applications to enhance their learning, and also highlights a number of points to consider in the design of the application, including the choice of haptic interface and the design of the virtual environment

    Theory for Magnetic Anisotropy of Field-Induced Insulator-to-Metal Transition in Cubic Kondo Insulator YbB_{12}

    Get PDF
    Magnetization and energy gap of Kondo insulator YbB_{12} are calculated theoretically based on the previously proposed tight-binding model composed of Yb 5dϵ\epsilon and 4f Γ8\Gamma_8 orbitals. It is found that magnetization curves are almost isotropic, naturally expected from the cubic symmetry, but that the gap-closing field has an anisotropy: the gap closes faster for the field in (100) direction than in (110) and (111) directions, in accord with the experiments. This is qualitatively understood by considering the maximal eigenvalues of the total angular momentum operators projected on each direction of the magnetic field. But the numerical calculation based on the band model yields better agreement with the experiment.Comment: 4 pages, 4 figures, to appear in J. Phys. Soc. Jp

    Infrared study of valence transition compound YbInCu4 using cleaved surfaces

    Get PDF
    Optical reflectivity R(w) of YbInCu4 single crystals has been measured across its first-order valence transition at T_v ~ 42 K, using both polished and cleaved surfaces. R(w) measured on cleaved surfaces Rc(w) was found much lower than that on polished surface Rp(w) over the entire infrared region. Upon cooling through T_v, Rc(w) showed a rapid change over a temperature range of less than 2 K, and showed only minor changes with further cooling. In contrast, Rp(w) showed much more gradual and continuous changes across T_v, similarly to previously reported data on polished surfaces. The present result on cleaved surfaces demonstrates that the microscopic electronic structures of YbInCu4 observed with infrared spectroscopy indeed undergo a sudden change upon the valence transition. The gradual temperature-evolution of Rp(w) is most likely due to the compositional and/or Yb-In site disorders caused by polishing.Comment: 4 pages, 4 figures, Fig.1(a) correcte
    corecore